58 research outputs found

    Kahler potentials for the MSSM inflation and the spectral index

    Full text link
    Recently it has been argued that some of the fine-tuning problems of the MSSM inflation associated with the existence of a saddle point along a flat direction may be solved naturally in a class of supergravity models. Here we extend the analysis and show that the constraints on the Kahler potentials in these models are considerably relaxed when the location of the saddle point is treated as a free variable. We also examine the effect of supergravity corrections on inflationary predictions and find that they can slightly alter the value of the spectral index. As an example, for flat direction field values ϕˉ0=1×104MP|\bar{\phi}_0|=1\times10^{-4}M_P we find n0.92...0.94n\sim0.92 ... 0.94 while the prediction of the MSSM inflation without any corrections is n0.92n\sim0.92.Comment: 13 pages, one figure. Typos corrected and a reference adde

    Colour-electric spectral function at next-to-leading order

    Full text link
    The spectral function related to the correlator of two colour-electric fields along a Polyakov loop determines the momentum diffusion coefficient of a heavy quark near rest with respect to a heat bath. We compute this spectral function at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The high-frequency part of our result (omega >> T), which is shown to be temperature-independent, is accurately determined thanks to asymptotic freedom; the low-frequency part of our result (omega << T), in which Hard Thermal Loop resummation is needed in order to cure infrared divergences, agrees with a previously determined expression. Our result may help to calibrate the overall normalization of a lattice-extracted spectral function in a perturbative frequency domain T << omega << 1/a, paving the way for a non-perturbative estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate the colour-electric Euclidean correlator, which could be directly compared with lattice simulations. As an aside we determine the Euclidean correlator in the lattice strong-coupling expansion, showing that through a limiting procedure it can in principle be defined also in the confined phase of pure Yang-Mills theory, even if a practical measurement could be very noisy there.Comment: 38 page

    Supersymmetric Leptogenesis and the Gravitino Bound

    Get PDF
    Supersymmetric thermal leptogenesis with a hierarchical right-handed neutrino mass spectrum requires the mass of the lightest right-handed neutrino to be heavier than about 10^9 GeV. This is in conflict with the upper bound on the reheating temperature which is found by imposing that the gravitinos generated during the reheating stage after inflation do not jeopardize successful nucleosynthesis. In this paper we show that a solution to this tension is actually already incorporated in the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right-handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the gravitino bound if two conditions are satisfied: the initial value of the flat direction must be close to Planckian values and the phase-dependent terms in the flat direction potential are either vanishing or sufficiently small.Comment: 9 pages. References added, version for Physics Letters

    Lectures on Cosmic Inflation and its Potential Stringy Realizations

    Full text link
    These notes present a brief introduction to Hot Big Bang cosmology and Cosmic Inflation, together with a selection of some recent attempts to embed inflation into string theory. They provide a partial description of lectures presented in courses at Dubrovnik in August 2006, at CERN in January 2007 and at Cargese in August 2007. They are aimed at graduate students with a working knowledge of quantum field theory, but who are unfamiliar with the details of cosmology or of string theory.Comment: 68 pages, lectures given at Dubrovnik, Aug 2006; CERN, January 2007; and Cargese, Aug 200

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore